Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Meyer, Rachel (Ed.)Abstract The Pismo clam, Tivela stultorum, is an ecologically and economically important species inhabiting sandy beaches and subtidal zones in central and southern California, USA, and northern Baja California, Mexico. This long-lived venerid clam species is of great management, cultural and conservation interest in California where it was harvested for centuries by indigenous people and then nearly extirpated by intense commercial and recreational overfishing in the mid-1900s. A recreational fishery continues today in California; however, T. stultorum faces pressure from poaching, overharvest, and the loss of sandy beaches from rising sea levels and beach erosion. Understanding the susceptibility and resilience of Pismo clams to these pressures is essential for their conservation. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to assemble a highly contiguous genome of 763 Mb. The genome had a contig N50 of 13 Mb and a scaffold N50 of 38 Mb with a BUSCO completeness score of 95%. Most of the genome sequences (96%) were contained in 19 scaffolds at least 10MB long, consistent with prior evidence that venerid clam genomes are composed of 19 autosomes. This reference genome will enable a more complete understanding of the ecology and evolutionary dynamics of T. stultorum via population genomic analyses, which will help assess risks from climate, fishing, environmental change, and susceptibilities due to life history. Our goal is to better support the continued recovery, informed management and conservation, and future persistence of T. stultorum, a long-lived and highly valued clam species.more » « lessFree, publicly-accessible full text available February 19, 2026
- 
            Coastal dunes are globally recognized as natural features that can enhance coastal resilience and protection from wave events, storm surges, coastal flooding, and longer- term sea level rise. As a result, dune restoration is being increasingly used along urban and natural coasts as an adaptation option for climate change. However, information on the performance of restored dunes in response to extreme events is limited. On urban beaches where management includes grooming, dunes are often degraded or absent, leaving coastal communities more vulnerable to flooding and erosion during storms and wave events. Following an extreme wave surge event in December 2023, we compared the performance of a small (1.2 hectare) pilot dune restoration on an intensively groomed urban beach in southern California to an adjacent mechanically groomed control site. We used total water level (wave setup, tide, wave runup) as a proxy for flooding potential. The average wave runup incursion distance was extended 13.6 m farther inland on the groomed control site compared to the dune restoration site. This result demonstrates the potential for restored dunes to enhance flood protection and the potential for increasing coastal resilience using nature-based solutions on urban beaches.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.more » « less
- 
            Coastal dunes are globally recognized as natural features that can be important adaptation approaches for climate change along urban and natural shores. We evaluated the recovery of coastal dunes on an intensively groomed urban beach in southern California over a six-year period after grooming was discontinued. Restoration actions were minimal and included installation of three sides of perimeter sand fencing, cessation of mechanical grooming and driving, and the addition of seeds of native dune plants. To track recovery, we conducted physical and biological surveys of the restoration site and an adjacent control site (groomed beach) using metrics including sand accretion, elevation, foredune and hummock formation, vegetation recovery, and wildlife use. Sediment accretion, elevation, and geomorphic complexity increased over time in the restoration site, largely in association with sand fencing and dune vegetation. A foredune ridge (maximum elevation increase of 0.9 m) and vegetated hummocks developed, along with a general increase in elevation across the restoration site (0.3 m). After six years, an estimated total volume of approximately 1,730 m3of sand had accreted in the restoration site and 540 m3of sand had accreted in the foredune ridge. Over the same period, more than a meter of sediment (vertical elevation change) accumulated along the perimeter sand fencing. Groomed control areas remained flat and uniform. The total cover of vegetation in the restoration site increased over time to a maximum of approximately 7% cover by the sixth year. No vegetation was observed on the groomed control site. Native plant species formed distinct zones across the restoration site beginning by the second year and increasing over time, with dune forming species aggregating closest to the ocean in association with the incipient foredune ridge. Ecological functions observed in the restoration area included presence of dune invertebrates, shorebird roosting, and use by a breeding federally threatened shorebird, the western snowy plover (Charadrius nivosus nivosus). Our findings on geomorphic and ecological responses of a pilot dune restoration on a heavily groomed urban beach provide new insights on the opportunities and expectations for restoring dunes as nature-based solutions for climate adaptation on urban shorelines.more » « less
- 
            Abstract As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
